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Optimization of a Reverse Osmosis System
Using Genetic Algorithm

Z. V. P. Murthy and Jiju Cherian Vengal

Department of Chemical Engineering, Sardar Vallabhbhai National

Institute of Technology, Surat, Gujarat, India

Abstract: Reverse Osmosis (RO) has found extensive application in industry as a

highly efficient separation process. In most cases, it is required to select the

optimum set of operating variables such that the performance of the system is

maximized. In this work, an attempt has been made to optimize the performance of

RO system with a cellulose acetate membrane to separate NaCl-Water system using

Genetic Algorithm (GA). The GAs are faster and more efficient than conventional

gradient based optimization techniques. The optimization problem was to maximize

the observed rejection of the solute by varying the feed flowrate and overall

permeate flux across the membrane for a constant feed concentration. To model the

system, a well-established transport model for RO system, the Spiegler-Kedem

model was used. It was found that the GA converged rapidly to the optimal solution

at the 8th generation. The effect of varying GA parameters like size of population,

crossover probability, and mutation probability on the result was also studied. The

algorithm converged to the optimum solution set at the 8th generation. It was also

seen that varying the computational parameters significantly affected the results.

Keywords: Reverse osmosis, genetic algorithm, optimization, Spiegler-Kedem model,

membrane transport model

INTRODUCTION

Genetic Algorithms (GAs) are stochastic search methods that mimic the

process of natural biological evolution. Genetic algorithms operate on a
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population of potential solutions applying the principle of survival of the fittest

to produce better and better approximations to a solution. In the field of

chemical engineering design, GAs have been applied for different operations

(1–11, 24). Reverse Osmosis (RO) is one of the most popular and established

membrane separation processes. Osmosis is the flow of solvent through a

semipermeable membrane from the less concentrated to the more concen-

trated region. The osmotic flow is a natural occurrence as the system tends

to come to equilibrium and equalize chemical potentials. The osmotic flow

can be decreased by applying pressure to the more concentrated solution.

The higher the applied pressure, the less is the osmotic flow. When the flow

stops, the applied pressure is the osmotic pressure. Reverse osmosis is a

process which reverses the normal direction of osmosis by increasing the

pressure of the concentrated stream. Industrial use of RO systems has been

preferred as they are more capital and energy efficient in comparison to con-

ventional separation techniques such as distillation, evaporation, and electro-

dialysis (25). Today, RO systems are widely used in desalination and water

treatment facilities. The main advantages of RO over other desalination

processes are its simple design, lower maintenance costs, easier de-bottleneck-

ing, simultaneous removal of both organic and inorganic impurities, low

discharge in the purge stream, and energy savings. RO is a rate-governed

pressure-driven process. The solvent flux depends upon the applied pressure

difference, trans-membrane osmotic pressure difference, concentration of

feed, permeability coefficients of salt andwater, and the extent of concentration

polarization. The flux increases (at the expense of high concentration

polarization) with an increase in the operating pressure difference and

permeability coefficients, and decreases with an increase in the salt

concentration (24).

Mathematical models and optimization techniques are being used

extensively in many areas of chemical engineering process design and

operation. Recently, these techniques have been applied to RO systems also

(10–13, 26). Attempts have been made to obtain optimal designs of RO

units considering cost as the single objective function (27). Sequential

quadratic programming (SQP) has been used (26) to find optimal networks

of RO modules. These studies involve the optimization of only a single

objective function. Like most problems, the design of RO modules is also

associated with several non-commensurate, objective functions that need to

be optimized simultaneously in the presence of a few constraints. Such

problems are best handled using multi-objective optimization (MOO) tech-

niques (1, 24, 27–38).

In the present work, a single objective optimization of a laboratory scale

RO system is carried out using a simple genetic algorithm. Observed solute

rejection (Ro) of a RO membrane expresses the effectiveness of a

membrane to remove salts from the water. As the objective of a RO process

is to maximize the solute rejection, Ro is chosen as the optimization

parameter. Feed flowrate (Q) and overall flux (Jv) have been reported as
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important process variables in the operation of a RO plant. Thus these two

parameters were chosen as the decision variables (14). The first part of the

paper discusses the principles of GA and its working. The next part deals

with the description of the optimization problem and the model equations

used to represent the system. Further the results obtained after executing the

algorithm is discussed in the last part of the paper.

GENETIC ALGORITHMS

Over the past couple of years genetic algorithms have been extensively

used (4, 39) to solve optimization problems involving single objective

functions. This simple genetic algorithm (SGA) (39) offers advantages

(12, 37) over more traditional optimization approaches. Genetic algorithms

score over conventional gradient based optimization methods like Newton’s

method, quadratic programming, conjugate gradient methods etc. in a

number of ways. It is a population based technique producing a number of

solutions at each iteration, unlike conventional methods which produce a

single solution at each stage, thus having a higher probability to converge

to local optima. Moreover, Genetic algorithms do not require derivative

information, as required by gradient search techniques, or other auxiliary

knowledge of the objective function implying that a wide range of functions

can be solved using GA. In the early algorithms, binary coding was used

for representing the continuous decision variables, i.e., these variables were

represented/coded as a series (string) of binary numbers (and then mapped

into real numbers for use in model equations). This is an unavoidable

compromise and causes problems (12, 37), e.g., it slows down the

computing speed and, at times, renders convergence impossible. Modifi-

cations (e.g., real coded Gas, the jumping gene adaptation, etc.) are

becoming available but each technique has its own limitations (24, 40).

Thus, GA can be effectively applied to optimize nonlinear and multi-

objective problems. In recent times, a lot of work has been published in the

literature on different modifications and applications of GAs in the chemical

engineering field (30, 34, 35, 41–58).

Genetic algorithm is a population based optimization technique where the

principles of natural evolution are applied to obtain the fittest solution of a

given problem. Unlike other optimization methods, GA works with a

population of candidate solutions. Each of these candidate solutions called

chromosome is given a fitness value. The chromosomes undergo genetic oper-

ations like selection, crossover (reproduction), and mutation to yield a new

generation of chromosomes. The fitness of the population increases over the

generations and finally converges to an optimum value. A flow sheet

showing the working of a GA is given (23) in Appendix I. Once the

objective function to be optimized and the decision variables of the problem

have been defined, the algorithm initializes a random population of
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chromosomes. Each chromosome represents a solution and a chromosome is

constituted of genes which represent the value of the decision variable used to

arrive at that particular solution. The value of the objective function of each

chromosome is taken as the fitness of the chromosome and another

parameter called fitness function is defined as:

Fitness function ¼
f ðsiðtÞÞ

PM
j¼1 f ðsiðtÞÞ

ð1Þ

where f(si(t)) is the fitness of the chromosome si and the denominator

represents the sum of the fitness of all the members of the population.

Depending on the fitness of the chromosomes, they are selected for

crossover. The different methods of selection are discussed elsewhere (5).

Crossover is the process of producing two offspring solutions by interchanging

the genetic properties of two parent chromosomes. Consequently it produces

children with opposing mixture of their parents’ genes. Another important

term is Crossover Probability (Pcross) which gives the probability of a chromo-

some being selected for crossover. By crossover offsprings are generated until

the population number is satisfied.

Another important genetic operator is mutation. Mutation leads to the

random alteration of the properties of a chromosome. It is possible that the

population converges to premature local maxima/minima after few

generations, in this context, mutation is important to maintain variety in the

population. Like Pcross there is mutation probability (Pmute) which gives the

probability for a chromosome to be mutated. After these genetic operations

are completed, a new generation of chromosomes is formed. The above

mentioned processes are applied to the candidate solutions of the new

generation and the next generation is formed. This evolutionary procedure

is continued until the termination criterion is reached. The termination

criteria can be the value of the fitness function or a maximum number of

generations.

PROBLEM FORMULATION AND OPTIMIZATION

Problem Formulation

The reverse osmosis experiments were performed with a laboratory setup

when one of the authors (ZVPM) was completing his Ph. D. at the Indian

Institute of Technology, Delhi (14). The membrane-housing cell was made

of stainless steel with two halves fastened together with high tensile bolts.

The top half of the cell contained the flow distribution chamber and the

bottom half was used as the membrane support. Sufficient membrane

support arrangement was given to withstand high pressures. Detailed

procedure of the experimentation and the specifications of the membrane
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used are given elsewhere (14, 15, 21). The hydraulic diameter of the cell is

0.9 cm and the average depth is 0.5 cm. The effective membrane surface

area is 60 cm2. The data of observed rejection (Ro) and permeate flux (Jv)

was collected for different combinations of concentrations, feed flowrates

(Q), and pressures.

The system under study is a cellulose acetate membrane RO set up

handling NaCl—water system (14). The feed concentration has been kept

constant at 1000 ppm, while varying the feed flowrate from 300mL/min to

1500mL/min and the overall flux from 0.0001 cm/s to 0.001412 cm/s. The
optimization problem was to maximize the rejection of the solute while

varying the feed flowrate and the overall flux across the membrane. To

model and obtain the relationship between the variables, common transport

models describing RO phenomenon were studied. Of the various models

reported (14–22), the Spiegler-Kedem model was found to give satisfactory

results. Moreover, the Spiegler-Kedam model was shown to accurately

represent the RO system under investigation (14–19). Thus, for the present

study, the above model was chosen. The Spiegler-Kedem model is based on

irreversible thermodynamics and involves three parameters. The model can

be mathematically expressed as:

Ro=ð1� RoÞ ¼ ½s=ð1� sÞ� ½1� expð�Jvð1� sÞ=PMÞ� expð�Jv=kÞ ð2Þ

Here, s is the reflection coefficient which represents the rejection

capability of a membrane, i.e., s ¼ 0 means no salt rejection and s ¼ 1

means 100% salt rejection, PM is the local solute permeability per unit

membrane thickness, and k is the mass transfer coefficient. The parameters

of equation (2), viz. s, PM and k were estimated for different RO systems

by one of the authors (14–19). Using the values of the estimated parameters,

equation (1) was written in terms of the problem variables.

The fitness variable in the present case is Ro, thus equation (2) was

written in Ro as,

Ro ¼
½s=ð1� sÞ�½1� expð�Jvð1� sÞ=PMÞ�expð�Jv=kÞ

1þ ½s=ð1� sÞ�½1� expð�Jvð1� sÞ=PMÞ�expð�Jv=kÞ
ð3Þ

The values of s, PM, Jv and k for the constant feed concentration of

1000 ppm were taken (18) from Table 1.

Optimization

The optimization problem was solved using the simple genetic algorithm

(SGA) coded in C, obtained from the Kanpur Genetic Algorithm Laboratory,

India. The method used to select genes for producing offspring has a
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Table 1. Input variables and their values supplied to GA program

Input Value

Number of Generation 20

Population Size (Npop) 20

Crossover Probability (Pcross) 0.90

Mutation Probability (Pmute) 0.001

Number of binary coded

variables

2

Sub-string length 10

Range of Q 300mL/min – 1500mL/min

Range of Jv 0.0001 cm/s–0.001412 cm/s

Initial NaCl

concentration

Q, mL/min PM � 105,cm/s s k � 104, cm/s

Membrane parameters PM, s, and k used in the present case [18]

1000 300 4.170 0.9398 81.91

1000 600 4.175 0.9398 140.82

1000 900 4.168 0.9396 197.28

1000 1200 4.167 0.9396 244.14

1000 1500 4.150 0.9393 286.63

Initial NaCl

concentration Q, mL/min DP, atm Ro Jv � 104, cm/s

Data used to estimate PM, s, and k [18]

1000 300 20 0.7613 1.62

1000 300 30 0.8343 2.81

1000 300 40 0.8752 4.46

1000 300 60 0.9003 6.87

1000 300 80 0.9119 9.44

1000 300 100 0.9183 12.76

1000 600 20 0.7773 1.78

1000 600 30 0.8408 2.94

1000 600 40 0.8831 4.82

1000 600 60 0.9041 6.98

1000 600 80 0.9168 9.81

1000 600 100 0.9233 12.95

1000 900 20 0.7890 1.92

1000 900 30 0.8444 3.02

1000 900 40 0.8863 4.98

1000 900 60 0.9067 7.22

1000 900 80 0.9191 10.11

1000 900 100 0.9256 13.40

1000 1200 20 0.8091 2.22

(continued )
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significant bearing on the performance of the algorithm. In the present

problem, Tournament selection was the method used (59, 60). In Tournament

Selection, two candidate chromosomes are chosen at random and the chromo-

some with the higher fitness among the two is selected for mating, thus a

population of ‘n’ chromosomes would require ‘2n’ tournaments for each gen-

eration. Crossover is the process of combining the characteristics of the two

parent chromosomes to produce an offspring. Single point crossover was

the technique used in the present problem. In single point crossover, a

crossover site along the bit strings of the chromosomes is chosen and the

values of the two chromosomes up to that point are swapped to produce a

new offspring. A popular method used to maintain the genetic diversity of

the population and thus ensuring that the population does not converge to

local minima is mutation. In binary mutation, a widely used mutation

technique, the values of the chromosome selected for mutation is flipped,

i.e. from 1 to 0 and vice versa. In the present problem, binary mutation,

with a mutation probability of 0.001 was chosen. The program was run for

20 generations which was used as the termination criteria of the problem.

The computational time was less than a minute in an Intel Celeron

(2.4GHz) machine. The various inputs given to the program were given in

Table 1. Further, the program was used to study the effect of varying the

GA computational parameters, viz. Npop, Pcross, and Pmute on the fitness of

the population.

RESULTS AND DISCUSSION

The values of the optimized output variables obtained are given in Table 2.

Figure 1 represents the evolution of the chromosomes over the generations.

Table 1. Continued

Initial NaCl

concentration Q, mL/min DP, atm Ro Jv � 104, cm/s

1000 1200 30 0.8478 3.11

1000 1200 40 0.8895 5.19

1000 1200 60 0.9093 7.54

1000 1200 80 0.9216 10.78

1000 1200 100 0.9270 13.76

1000 1500 20 0.8178 2.38

1000 1500 30 0.8539 3.26

1000 1500 40 0.8914 5.32

1000 1500 60 0.9105 7.69

1000 1500 80 0.9224 10.89

1000 1500 100 0.9279 14.12
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It is observed that the average fitness of the chromosomes increases over the

generations and finally converge to an optimum value. In the present study

the maximum rejection obtained was 0.93090 at a feed flowrate of

1495.30mL/min and an overall flux of 0.0014 cm/s. For a better understand-
ing of the comprehensiveness of the algorithm, the complete output set of the

8th generation is given in Appendix II. For each of the 20 chromosomes, the

real and binary values of the variables and corresponding fitness are shown.

Table 2. The optimized output variables obtained from GA program

Variable Value

Maximum fitness (Ro,max) 0.93090

Optimum Q 1495.30mL/min

Optimum Jv 0.0014 cm/s
Converged in 8th generation

Figure 1. Plot showing the evolution of fitness with generation.
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The results show that the rejection increases with both Q and Jv. Unlike con-

ventional optimization methods, GA is a population based method, which

means that at the end of each iteration, a population of solutions will be

generated and not just a single optimum solution. In the present problem a

total of 400 solutions were generated, thus giving the operator a wide

variety of variable combinations to choose from for the desired operation of

the plant.

Effect of Varying the Computational Parameters

In any genetic algorithm, the values of the computational parameters can be

chosen from a wide range. It is important to use the optimum value for the

various parameters to obtain the best results. In order to understand the

effect of varying the computational parameters and to obtain the optimum

values of each, an extensive study was conducted by varying Npop, Pcross,

and Pmute. As reported in literature (10), Pmute was found to be the most

sensitive parameter. The program was tested for Pmute 0.1, 0.05, and 0.001.

The effect of Pmute on the fitness and the fitness distribution of the population

are shown in Fig. 2 and 3, for Pmute 0.05 and 0.001, respectively.

Figure 2. Fitness values over generations for Pmute ¼ 0.05.
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It is observed that with an increase in the mutation probability, the variety

in the population increases and the chromosomes do not converge to an

optimum. While with a decrease in Pmute it was observed that the values

quickly converged to an optimum. As a large variation in the fitness in each

Figure 3. Fitness value over generations for Pmute ¼ 0.001.

Figure 4. Plot showing the variation of Fitness with different Pcross values.
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generation is not preferred, it is advisable to keep Pmute to a low value. A Pmute

of 0.001 was found to be satisfactory in the present study. Similarly, Pcross was

changed over a wide range keeping Pmute constant.

Figure 4 shows the variation of fitness with different Pcross. It is observed

that the fitness of the chromosomes increase with increasing Pcross. It is noted

that the function gives optimum values at a Pcross of 0.85 – 0.9 and a further

increase in Pcross does not increase the fitness, which is a similar trend reported

elsewhere (10). A similar trend was observed with the variation of Npop. A low

initial population produced low fitness chromosomes. It was seen that for the

present study, the average fitness value of the population converged to the

optimum value at the 12th generation and a further increase in the number

of generations is a waste of computational time.

CONCLUSION

A simple genetic algorithm was used to solve a single objective optimization

problem of a RO system. It was found that a flowrate of 1495.30mL/min and

an overall flux of 0.0014 cm/s gave the optimum rejection of 0.93090. A study

on the effect of varying the computational parameters on the solution was also

studied. It was found that the algorithm used converged quickly and efficiently

to an optimum solution. Moreover, a large number of solutions were generated

which allows one to choose the required input variable set for the desired

rejection. It was also observed that varying the computational parameters

had a significant effect on the results generated. Mutation probability is the

most sensitive parameter and its values should be kept low. The fitness was

seen to increase with an increase in the crossover probability and the

population number. These results match with those reported in the literature

(9). GAs are seen to be extremely powerful in solving multi-objective

problems (11) and a similar methodology as explained in the paper can be

used to optimize a multi-objective RO system.

NOMENCLATURE

GA Genetic Algorithm

f(si(t)) Fitness of the chromosome si
Jv Volumetric flux across the membrane

k Mass transfer coefficient

Npop Number of chromosomes in a population

DP Pressure difference across the membrane

Pcross Crossover probability

PM Local solute permeability per unit membrane thickness

Pmute Mutation probability

Q Feed flow rate
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RO Reverse osmosis

Ro Observed rejection of solute

si Chromosome i

s Reflection coefficient; 0 for no rejection;

1 for total rejection

APPENDIX I
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