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Optimization of a Reverse Osmosis System
Using Genetic Algorithm

Z.V. P. Murthy and Jiju Cherian Vengal
Department of Chemical Engineering, Sardar Vallabhbhai National
Institute of Technology, Surat, Gujarat, India

Abstract: Reverse Osmosis (RO) has found extensive application in industry as a
highly efficient separation process. In most cases, it is required to select the
optimum set of operating variables such that the performance of the system is
maximized. In this work, an attempt has been made to optimize the performance of
RO system with a cellulose acetate membrane to separate NaCl-Water system using
Genetic Algorithm (GA). The GAs are faster and more efficient than conventional
gradient based optimization techniques. The optimization problem was to maximize
the observed rejection of the solute by varying the feed flowrate and overall
permeate flux across the membrane for a constant feed concentration. To model the
system, a well-established transport model for RO system, the Spiegler-Kedem
model was used. It was found that the GA converged rapidly to the optimal solution
at the 8th generation. The effect of varying GA parameters like size of population,
crossover probability, and mutation probability on the result was also studied. The
algorithm converged to the optimum solution set at the 8th generation. It was also
seen that varying the computational parameters significantly affected the results.

Keywords: Reverse osmosis, genetic algorithm, optimization, Spiegler-Kedem model,
membrane transport model

INTRODUCTION

Genetic Algorithms (GAs) are stochastic search methods that mimic the
process of natural biological evolution. Genetic algorithms operate on a
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population of potential solutions applying the principle of survival of the fittest
to produce better and better approximations to a solution. In the field of
chemical engineering design, GAs have been applied for different operations
(1-11, 24). Reverse Osmosis (RO) is one of the most popular and established
membrane separation processes. Osmosis is the flow of solvent through a
semipermeable membrane from the less concentrated to the more concen-
trated region. The osmotic flow is a natural occurrence as the system tends
to come to equilibrium and equalize chemical potentials. The osmotic flow
can be decreased by applying pressure to the more concentrated solution.
The higher the applied pressure, the less is the osmotic flow. When the flow
stops, the applied pressure is the osmotic pressure. Reverse osmosis is a
process which reverses the normal direction of osmosis by increasing the
pressure of the concentrated stream. Industrial use of RO systems has been
preferred as they are more capital and energy efficient in comparison to con-
ventional separation techniques such as distillation, evaporation, and electro-
dialysis (25). Today, RO systems are widely used in desalination and water
treatment facilities. The main advantages of RO over other desalination
processes are its simple design, lower maintenance costs, easier de-bottleneck-
ing, simultaneous removal of both organic and inorganic impurities, low
discharge in the purge stream, and energy savings. RO is a rate-governed
pressure-driven process. The solvent flux depends upon the applied pressure
difference, trans-membrane osmotic pressure difference, concentration of
feed, permeability coefficients of salt and water, and the extent of concentration
polarization. The flux increases (at the expense of high concentration
polarization) with an increase in the operating pressure difference and
permeability coefficients, and decreases with an increase in the salt
concentration (24).

Mathematical models and optimization techniques are being used
extensively in many areas of chemical engineering process design and
operation. Recently, these techniques have been applied to RO systems also
(10-13, 26). Attempts have been made to obtain optimal designs of RO
units considering cost as the single objective function (27). Sequential
quadratic programming (SQP) has been used (26) to find optimal networks
of RO modules. These studies involve the optimization of only a single
objective function. Like most problems, the design of RO modules is also
associated with several non-commensurate, objective functions that need to
be optimized simultaneously in the presence of a few constraints. Such
problems are best handled using multi-objective optimization (MOO) tech-
niques (1, 24, 27-38).

In the present work, a single objective optimization of a laboratory scale
RO system is carried out using a simple genetic algorithm. Observed solute
rejection (Ro) of a RO membrane expresses the effectiveness of a
membrane to remove salts from the water. As the objective of a RO process
is to maximize the solute rejection, Ro is chosen as the optimization
parameter. Feed flowrate (Q) and overall flux (Jv) have been reported as
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important process variables in the operation of a RO plant. Thus these two
parameters were chosen as the decision variables (14). The first part of the
paper discusses the principles of GA and its working. The next part deals
with the description of the optimization problem and the model equations
used to represent the system. Further the results obtained after executing the
algorithm is discussed in the last part of the paper.

GENETIC ALGORITHMS

Over the past couple of years genetic algorithms have been extensively
used (4, 39) to solve optimization problems involving single objective
functions. This simple genetic algorithm (SGA) (39) offers advantages
(12, 37) over more traditional optimization approaches. Genetic algorithms
score over conventional gradient based optimization methods like Newton’s
method, quadratic programming, conjugate gradient methods etc. in a
number of ways. It is a population based technique producing a number of
solutions at each iteration, unlike conventional methods which produce a
single solution at each stage, thus having a higher probability to converge
to local optima. Moreover, Genetic algorithms do not require derivative
information, as required by gradient search techniques, or other auxiliary
knowledge of the objective function implying that a wide range of functions
can be solved using GA. In the early algorithms, binary coding was used
for representing the continuous decision variables, i.e., these variables were
represented/coded as a series (string) of binary numbers (and then mapped
into real numbers for use in model equations). This is an unavoidable
compromise and causes problems (12, 37), e.g., it slows down the
computing speed and, at times, renders convergence impossible. Modifi-
cations (e.g., real coded Gas, the jumping gene adaptation, etc.) are
becoming available but each technique has its own limitations (24, 40).
Thus, GA can be effectively applied to optimize nonlinear and multi-
objective problems. In recent times, a lot of work has been published in the
literature on different modifications and applications of GAs in the chemical
engineering field (30, 34, 35, 41-58).

Genetic algorithm is a population based optimization technique where the
principles of natural evolution are applied to obtain the fittest solution of a
given problem. Unlike other optimization methods, GA works with a
population of candidate solutions. Each of these candidate solutions called
chromosome is given a fitness value. The chromosomes undergo genetic oper-
ations like selection, crossover (reproduction), and mutation to yield a new
generation of chromosomes. The fitness of the population increases over the
generations and finally converges to an optimum value. A flow sheet
showing the working of a GA is given (23) in Appendix I. Once the
objective function to be optimized and the decision variables of the problem
have been defined, the algorithm initializes a random population of
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chromosomes. Each chromosome represents a solution and a chromosome is
constituted of genes which represent the value of the decision variable used to
arrive at that particular solution. The value of the objective function of each
chromosome is taken as the fifness of the chromosome and another
parameter called fitness function is defined as:

F(si(0)
S f(si0)

where f(si(f)) is the fitness of the chromosome s; and the denominator
represents the sum of the fitness of all the members of the population.
Depending on the fitness of the chromosomes, they are selected for
crossover. The different methods of selection are discussed elsewhere (5).
Crossover is the process of producing two offspring solutions by interchanging
the genetic properties of two parent chromosomes. Consequently it produces
children with opposing mixture of their parents’ genes. Another important
term is Crossover Probability (P.,.s) Which gives the probability of a chromo-
some being selected for crossover. By crossover offsprings are generated until
the population number is satisfied.

Another important genetic operator is mutation. Mutation leads to the
random alteration of the properties of a chromosome. It is possible that the
population converges to premature local maxima/minima after few
generations, in this context, mutation is important to maintain variety in the
population. Like P, there is mutation probability (P..) Which gives the
probability for a chromosome to be mutated. After these genetic operations
are completed, a new generation of chromosomes is formed. The above
mentioned processes are applied to the candidate solutions of the new
generation and the next generation is formed. This evolutionary procedure
is continued until the termination criterion is reached. The termination
criteria can be the value of the fitness function or a maximum number of
generations.

Fitness function =

(M

PROBLEM FORMULATION AND OPTIMIZATION
Problem Formulation

The reverse osmosis experiments were performed with a laboratory setup
when one of the authors (ZVPM) was completing his Ph. D. at the Indian
Institute of Technology, Delhi (14). The membrane-housing cell was made
of stainless steel with two halves fastened together with high tensile bolts.
The top half of the cell contained the flow distribution chamber and the
bottom half was used as the membrane support. Sufficient membrane
support arrangement was given to withstand high pressures. Detailed
procedure of the experimentation and the specifications of the membrane
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used are given elsewhere (14, 15, 21). The hydraulic diameter of the cell is
0.9cm and the average depth is 0.5cm. The effective membrane surface
area is 60 cm”. The data of observed rejection (Ro) and permeate flux (Jv)
was collected for different combinations of concentrations, feed flowrates
(Q), and pressures.

The system under study is a cellulose acetate membrane RO set up
handling NaCl—water system (14). The feed concentration has been kept
constant at 1000 ppm, while varying the feed flowrate from 300 mL/min to
1500 mL/min and the overall flux from 0.0001 cm/s to 0.001412 cm/s. The
optimization problem was to maximize the rejection of the solute while
varying the feed flowrate and the overall flux across the membrane. To
model and obtain the relationship between the variables, common transport
models describing RO phenomenon were studied. Of the various models
reported (14—-22), the Spiegler-Kedem model was found to give satisfactory
results. Moreover, the Spiegler-Kedam model was shown to accurately
represent the RO system under investigation (14—19). Thus, for the present
study, the above model was chosen. The Spiegler-Kedem model is based on
irreversible thermodynamics and involves three parameters. The model can
be mathematically expressed as:

Ro/(I —Ro) = [0/(1 = 0)] [ — exp(=Iv(1 — 0)/Py)]exp(=Iv/K) (2)

Here, o is the reflection coefficient which represents the rejection
capability of a membrane, i.e., 0 =0 means no salt rejection and o =1
means 100% salt rejection, Py is the local solute permeability per unit
membrane thickness, and k is the mass transfer coefficient. The parameters
of equation (2), viz. o, Py and k were estimated for different RO systems
by one of the authors (14—19). Using the values of the estimated parameters,
equation (1) was written in terms of the problem variables.

The fitness variable in the present case is Ro, thus equation (2) was
written in Ro as,

R 10/(1 = 1 = exp(=/(1 = o)/ Pulexp(=Jv/k)
1+ [0/(1 — o)L — exp(—In(I — 0)/Pa)lexp(—Jv/k)

©)

The values of o, Py, Jv and k for the constant feed concentration of
1000 ppm were taken (18) from Table 1.

Optimization
The optimization problem was solved using the simple genetic algorithm

(SGA) coded in C, obtained from the Kanpur Genetic Algorithm Laboratory,
India. The method used to select genes for producing offspring has a
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Table 1. Input variables and their values supplied to GA program

Input Value

Number of Generation 20

Population Size (Npqp) 20

Crossover Probability (Peross) 0.90

Mutation Probability (Pyue) 0.001

Number of binary coded 2

variables

Sub-string length 10

Range of Q 300 mL/min — 1500 mL/min
Range of Jv 0.0001 cm/s—0.001412cm/s
Initial NaCl Q, mL/min Py x 10°,cm/s o k x 10%, cm/s
concentration

Membrane parameters Py, o, and k used in the present case [18]

1000 300 4.170 0.9398 81.91
1000 600 4.175 0.9398 140.82
1000 900 4.168 0.9396 197.28
1000 1200 4.167 0.9396 244.14
1000 1500 4.150 0.9393 286.63

Initial NaCl
concentration Q, mL/min AP, atm Ro Tv x 10%, cm /s

Data used to estimate Py, o, and k [18]

1000 300 20 0.7613 1.62
1000 300 30 0.8343 2.81
1000 300 40 0.8752 4.46
1000 300 60 0.9003 6.87
1000 300 80 0.9119 9.44
1000 300 100 0.9183 12.76
1000 600 20 0.7773 1.78
1000 600 30 0.8408 2.94
1000 600 40 0.8831 4.82
1000 600 60 0.9041 6.98
1000 600 80 0.9168 9.81
1000 600 100 0.9233 12.95
1000 900 20 0.7890 1.92
1000 900 30 0.8444 3.02
1000 900 40 0.8863 4.98
1000 900 60 0.9067 7.22
1000 900 80 0.9191 10.11
1000 900 100 0.9256 13.40
1000 1200 20 0.8091 222

(continued)
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Table 1. Continued

Initial NaCl

concentration Q, mL/min AP, atm Ro Jv x 104, cm/s
1000 1200 30 0.8478 3.11
1000 1200 40 0.8895 5.19
1000 1200 60 0.9093 7.54
1000 1200 80 0.9216 10.78
1000 1200 100 0.9270 13.76
1000 1500 20 0.8178 2.38
1000 1500 30 0.8539 3.26
1000 1500 40 0.8914 5.32
1000 1500 60 0.9105 7.69
1000 1500 80 0.9224 10.89
1000 1500 100 0.9279 14.12

significant bearing on the performance of the algorithm. In the present
problem, Tournament selection was the method used (59, 60). In Tournament
Selection, two candidate chromosomes are chosen at random and the chromo-
some with the higher fitness among the two is selected for mating, thus a
population of ‘n’ chromosomes would require ‘2n’ tournaments for each gen-
eration. Crossover is the process of combining the characteristics of the two
parent chromosomes to produce an offspring. Single point crossover was
the technique used in the present problem. In single point crossover, a
crossover site along the bit strings of the chromosomes is chosen and the
values of the two chromosomes up to that point are swapped to produce a
new offspring. A popular method used to maintain the genetic diversity of
the population and thus ensuring that the population does not converge to
local minima is mutation. In binary mutation, a widely used mutation
technique, the values of the chromosome selected for mutation is flipped,
i.e. from 1 to O and vice versa. In the present problem, binary mutation,
with a mutation probability of 0.001 was chosen. The program was run for
20 generations which was used as the termination criteria of the problem.
The computational time was less than a minute in an Intel Celeron
(2.4 GHz) machine. The various inputs given to the program were given in
Table 1. Further, the program was used to study the effect of varying the
GA computational parameters, Viz. Npop Perogss and Py on the fitness of
the population.

RESULTS AND DISCUSSION

The values of the optimized output variables obtained are given in Table 2.
Figure 1 represents the evolution of the chromosomes over the generations.



09: 44 25 January 2011

Downl oaded At:

654 Z. V. P. Murthy and J. C. Vengal

Table 2. The optimized output variables obtained from GA program

Variable Value
Maximum fitness (Ro,max) 0.93090
Optimum Q 1495.30 mL/min
Optimum Jv 0.0014cm/s
Converged in 8th generation

It is observed that the average fitness of the chromosomes increases over the
generations and finally converge to an optimum value. In the present study
the maximum rejection obtained was 0.93090 at a feed flowrate of
1495.30 mL/min and an overall flux of 0.0014 cm/s. For a better understand-
ing of the comprehensiveness of the algorithm, the complete output set of the
8th generation is given in Appendix II. For each of the 20 chromosomes, the
real and binary values of the variables and corresponding fitness are shown.

Evolution of fithess

0.85

*  Bestfilness

0.90 " Average fitness

Fitness

0.85

0.80

075

1 3 5 7 9 11
Generations

Figure 1. Plot showing the evolution of fitness with generation.



09: 44 25 January 2011

Downl oaded At:

Optimization of a Reverse Osmosis System 655

The results show that the rejection increases with both Q and Jv. Unlike con-
ventional optimization methods, GA is a population based method, which
means that at the end of each iteration, a population of solutions will be
generated and not just a single optimum solution. In the present problem a
total of 400 solutions were generated, thus giving the operator a wide
variety of variable combinations to choose from for the desired operation of
the plant.

Effect of Varying the Computational Parameters

In any genetic algorithm, the values of the computational parameters can be
chosen from a wide range. It is important to use the optimum value for the
various parameters to obtain the best results. In order to understand the
effect of varying the computational parameters and to obtain the optimum
values of each, an extensive study was conducted by varying Nyop, Perosss
and P,,.. As reported in literature (10), P, was found to be the most
sensitive parameter. The program was tested for P, 0.1, 0.05, and 0.001.
The effect of P, On the fitness and the fitness distribution of the population
are shown in Fig. 2 and 3, for P, 0.05 and 0.001, respectively.

Evolution pattern for Py.=0.05

093 L * ¢ * e * * e
* e s * * e +
)

0.92
/7]
0 +
E +
i .91

0.90|

0 5 10 15 20 25

Generations

Figure 2. Fitness values over generations for P, = 0.05.
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Evolution pattern for Py = 0.001

0.94

Q.93

LN I B 2 I IR I J

092

0.91

Fithess

0.9

.89

Generations

Figure 3. Fitness value over generations for Py, = 0.001.

It is observed that with an increase in the mutation probability, the variety
in the population increases and the chromosomes do not converge to an
optimum. While with a decrease in P, it was observed that the values
quickly converged to an optimum. As a large variation in the fitness in each

0.935 Variation of fitness with P
0.930 st b
- *
)]
W
Q
<
= 0.925
L
0.920 +
0.915 M
0 0.5 1

PCI‘OSS

Figure 4. Plot showing the variation of Fitness with different P, values.
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generation is not preferred, it is advisable to keep Py to a low value. A Py
of 0.001 was found to be satisfactory in the present study. Similarly, P s Was
changed over a wide range keeping P, constant.

Figure 4 shows the variation of fitness with different P,,. It is observed
that the fitness of the chromosomes increase with increasing P.,s. It is noted
that the function gives optimum values at a P, of 0.85 — 0.9 and a further
increase in P,.s does not increase the fitness, which is a similar trend reported
elsewhere (10). A similar trend was observed with the variation of Np,,. A low
initial population produced low fitness chromosomes. It was seen that for the
present study, the average fitness value of the population converged to the
optimum value at the 12th generation and a further increase in the number
of generations is a waste of computational time.

CONCLUSION

A simple genetic algorithm was used to solve a single objective optimization
problem of a RO system. It was found that a flowrate of 1495.30 mL/min and
an overall flux of 0.0014 cm/s gave the optimum rejection of 0.93090. A study
on the effect of varying the computational parameters on the solution was also
studied. It was found that the algorithm used converged quickly and efficiently
to an optimum solution. Moreover, a large number of solutions were generated
which allows one to choose the required input variable set for the desired
rejection. It was also observed that varying the computational parameters
had a significant effect on the results generated. Mutation probability is the
most sensitive parameter and its values should be kept low. The fitness was
seen to increase with an increase in the crossover probability and the
population number. These results match with those reported in the literature
(9). GAs are seen to be extremely powerful in solving multi-objective
problems (11) and a similar methodology as explained in the paper can be
used to optimize a multi-objective RO system.

NOMENCLATURE

GA Genetic Algorithm

f(si(1)) Fitness of the chromosome s;

Jv Volumetric flux across the membrane

k Mass transfer coefficient

Npop Number of chromosomes in a population

AP Pressure difference across the membrane

Peross Crossover probability

Pum Local solute permeability per unit membrane thickness
Prute Mutation probability

Q Feed flow rate
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RO Reverse osmosis

Ro Observed rejection of solute

S; Chromosome i

o Reflection coefficient; O for no rejection;

1 for total rejection

APPENDIX I
Working of a Genetic Algorithm Program
Gen=10
¥
Create Initial
Random Population
Termination Yes Designate
Criterion Satisfied | Result
§ o !
Evaluate Fitness of Each End
Individual in Population
Individuals =
Yes 1
Gen = Gen +1 Individuals = M?  [7
No
. 4 .
Reproduction Mutation

Sclect Genetic Operation

Probabilistically

Select One Tndividual l Crossover Seleet One Individual
Based on Fitmess Based on Fitness

Select Two Individuals
Based on Fitness

Perform Mutation

3

Perform Reproduction ‘

l Pertorm Crossover
Y
Copy into New l Insert Mutant into New
Population Population
Insert Tow
l Offspring l
Tnto New
Individuals = Individuals + 1 ‘ Population Individuals = Individuvals + |

!

|Individuals = Individuals +2

! !
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APPENDIX II

No. Jv(cm/s) Q (mL/min) Fitness

1. 0.00141 1347.50733| 0.93084
String =1101111111-1011111011

2. 0.00141 1295.89443| 0.93081
String = 1101111111-1000101011

3. 0.00141  850.14663 0.93046
String = 1101111111-1010101110

4. 0.00141 1448.38710I 0.93088
String = 1101111111-1100101111

5. 0.00141  1263.04985| 0.93079
String = 1101111111-1010110011

6. 0.00141  894.72141| 0.93051
String = 1101111111-1101111110

7. 0.00141 1343.98827I 0.93083
String=1101111111-0101111011

8. 0.00141 882.99120| 0.93050
String = 1101111111-1000111110

9. 0.00141 1343.98827| 0.93082
String =0101111111-0101111011

10. 0.00141 1448.38710I 0.93086
String =0101111111-1100101111

11. 0.00141 743.40176l 0.93030
String =0101111111-0101111010

12. 0.00141 1495.30792I 0.93090
String = 1101 111111-1101111111

13. 0.00141 893.54839I 0.93051
String=1101111111-0101111110

14, 000141 1342.81525I 0.93083
String = 1101111111-1001111011

15. 0.00141 1448.38710I 0.93086
String=0101111111-1100101111

16. 0.00141 1270.08798| 0.93078
String =0101111111-1101110011

17. 0.00141 1263.04985I 0.93079
String = 1101111111-1010110011

18. 0.00141 1448.38710I 0.93088
String = 1101111111-1100101111

19. 0.00141 1333.43109I 0.93083
String = 1101111111-1000111011

20. 0.00141 1225.51320| 0.93076

String =0101111111-1010100011
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